Даже при импульсной мощности 40 Вт и часто‑ те переключения 2 МГц температура корпуса LT8636 остается ниже 40 °C, что позволяет схеме безопасно работать вплоть до тока до 8 А в течение короткого периода без вентиляторов или радиаторов. Это обеспечивает корпус LQFN размером 3×4 мм, созданный с применением усовершенствованной технологии корпусирования (позволяющей получить пониженное тепловое сопротивление) и высокой эффективности LT8636 на высокой частоте.
Уменьшение габаритов при работе на высокой частоте
Ценность пространства в автомобильных приложениях все более возрастает, что делает необходимым уменьшение габаритов источников питания, чтобы они соответствовали посадочному месту на дорогостоящей плате. Повышение рабочей частоты источника питания позволяет использовать более компактные внешние компоненты, такие как конденсаторы и катушки индуктивности. Кроме того, как уже упоминалось ранее, в автомобильных приложениях частоты переключения выше 2 МГц (или ниже 400 кГц) позволяют использовать основную частоту вне AM‑диапазона. Если сравнить обычно используемые 400 кГц с 2 МГц, то пятикратное увеличение частоты переключения позволяет в пять раз уменьшить индуктивность и выходную емкость, используемые в 400‑кГц проекте. Это кажется простым. Тем не менее даже микросхемы, способные работать на высоких частотах, могут быть неприменимы для многих приложений из‑за необходимости некоторых компромиссов, присущих высокочастотному решению.
Например, работа на высокой частоте в приложениях с высоким коэффициентом понижения требует минимального времени во включенном состоянии. В соответствии с уравнением
Vout = Ton · Fsw · Vin при рабочей частоте 2 МГц требуется время во включенном состоянии верхнего ключа (Ton) около 50 нс для получения выходного напряжения 3,3 из 24 В на входе. Если силовая ИС не может обеспечить такого малого времени включенного состояния, потребуется пропуск импульсов, чтобы поддерживать низкий уровень стабилизированного выхода, что в значительной степени противоречит цели высокой частоты коммутации. То есть эквивалентная частота переключения (из‑за пропуска импульсов) вероятно будет находиться в AM‑диапазоне. Обеспечивая минимальное время включенного состояния верхнего ключа на уровне 30 нс, LT8636 позволяет напрямую преобразовывать высокое напряжение Vin в низкое напряжение Vout на частоте 2 МГц. В отличие от этого, многие устройства характеризуются минимальным значением времени во включенном состоянии, превышающем 75 нс, что требует работы на низкой частоте (400 кГц), чтобы обеспечить более высокие коэффициенты понижения для исключения пропуска импульсов.
Другая распространенная проблема с высокой частотой коммутации заключается в том, что потери на переключение имеют тенденцию к увеличению. Потери, связанные с переключением, включают в себя потери при включении, потери при выключении и потери при управлении затвором ключа — все они примерно линейно зависят от частоты переключения. Тем не менее эти потери могут быть снижены с помощью более быстрого времени включения и выключения. Время включения и выключения LT8636 очень короткое, менее 5 В / нс, в результате чего достигаются минимальное время холостого хода и минимальное время работы «встроенного» паразитного диода в силовых полевых транзисторах, что снижает потери на переключение на высокой частоте.
Используемый в рассматриваемом решении стабилизатор LT8636 поставляется в корпусе LQFN с габарита‑ ми 3×4 мм и представляет собой интегральную схему со встроенными силовыми ключами и всеми необходимыми цепями, что обеспечивает минимальное место, занимаемое на плате. Большая контактная площадка заземления под корпусом ИС обеспечивает передачу тепла на печатную плату с очень низким тепловым сопротивлением (26 °C / Вт), что устраняет необходимость в дополнительном управлении тепловыми режимами. Корпус разработан в соответствии с требованиями методологии FMEA. Технология Silent Switcher уменьшает площадь «горячего» контура на печатной плате, поэтому излучаемые ЭМП при такой высокой частоте переключения могут быть легко заблокированы с помощью простых фильтров, как было показано на рис. 3.
Заключение
При тщательном выборе микросхемы можно создавать компактные высококачественные источники питания для автомобильных приложений без обычных в таких случаях компромиссов. Таким образом можно достичь высокой эффективности, высокой частоты переключения и низкого уровня электромагнитных помех. Примером таких решений может быть описанный в статье компактный понижающий стабилизатор в интегральном исполнении LT8636 семейства Silent Switcher в корпусе LQFN (3×4 мм), который работает с входным диапазоном от 3,4 до 42 В и передает непрерывный ток в нагрузку до 5 А и пиковый ток до 7 А. В этой микросхеме выводы Vin отделены друг от друга и размещены симметрично на корпусе, что позволяет разделить высокочастотный «горячий» контур, чтобы обеспечить взаимное подавление магнитной составляющей поля и снизить уровень излучаемых помех. Кроме того, синхронная топология и быстрые фронты коммутирующих сигналов повышают КПД при большой нагрузке, а эффективность при малой нагрузке улучшена благодаря работе в режиме Burst Mode с низким уровнем пульсаций.
LT8636 подходит для применения в автомобильных приложениях с диапазоном входного напряжения от 3,4 до 42 В и малым падением напряжения, что позволяет ему работать в таких режимах, как запуск двигателя или отключение нагрузки. В автомобильных системах разработчики привыкли сталкиваться с различными трудностями при попытке уменьшить га‑ бариты источника питания, но с помощью представленных в статье решений они могут достичь всех своих целей без ухудшения характеристик системы.